A Micro Prover for Teaching Automated Reasoning

Jørgen Villadsen
Technical University of Denmark

Abstract

We present a simple prover for classical propositional logic. The prover is based on the sequent calculus and is formally verified in the Isabelle/HOL proof assistant. We use the prover for teaching automated reasoning to computer science students. The micro prover is available online and is simple enough to be the first example in a course. It shows how to use Isabelle/HOL and it also shows a prover program with termination, soundness and completeness proofs.

1 Introduction

In an invited talk last year, at the Certified Programs and Proofs (CPP) conference co-located with POPL, Jasmin Blanchette made the following observation [2]:

At programming language conferences such as POPL and ICFP, submissions are often accompanied by formalizations... Paradoxically, the automated reasoning community has largely stood on the sidelines of these developments. Like the shoemaker’s children who go barefoot, we reflexively turn to “pen and paper” – by which we usually mean LaTeX – to define our logics, specify our proof systems, and establish their soundness and completeness.

The proof assistant Isabelle/HOL [13] is one of the most used proof assistants and in 2015 the IsaFoL (Isabelle Formalization of Logic) effort started (https://bitbucket.org/isafol). The goal is to develop lemma libraries and methodology for formalizing modern research in automated reasoning and for supporting modern teaching in automated reasoning too. More than 20 researchers have contributed so far and most of the formalizations are available in the Archive of Formal Proofs (https://isa-afp.org/) and are therefore assured updates for future releases of Isabelle.

These formalizations of logic provide specifications of the syntax, semantics and various proof systems with formally verified soundness and preferably also completeness theorems. The state-of-the-art is a series of formalizations of resolution for first-order logic [16, 18, 17]. While such formalizations are indeed very valuable for researchers and PhD students, they are in our opinion not at the moment suitable for teaching logic to bachelor and master students. The amount of details is simply too large.

Since 2015 we have rather successfully used simpler formalizations of logic for bachelor and master computer science students. In particular, our Natural Deduction Assistant (NaDeA) [22, 21] has been used by more than 300 students in the BSc course “Logical Systems and Logic Programming” (https://kurser.dtu.dk/course/02156). NaDeA allows students to develop and test their natural deduction skills interactively for first-order logic. NaDeA is open source, runs in a standard browser and has a log-in system called ProofJudge for students to upload
proofs and teaching assistants to assess them. However, the salient point of NaDeA is the integration with Isabelle/HOL — upon completion of a proof in NaDeA the student obtains a formal proof in Isabelle/HOL from the specification of the syntax, semantics and natural deduction proof system — this formal proof relies only on the formalization of first-order logic in Isabelle/HOL, replaying the proof so to speak.

For selected students we have created special courses and projects based on the following more advanced formalizations of logic:

- Declarative Prover / Students’ Proof Assistant (SPA) [10, 19]
- Simple Prover (Negation Normal Form) [15, 24]

Both provide formally verified provers for first-order logic. The former has a formal soundness proof and allows for declarative proofs as described in John Harrison’s Handbook of Practical Logic and Automated Reasoning, Cambridge University Press, 2009. The latter has a formal soundness proof as well as a formal completeness proof for a fixed proof method. Both provers can either be executed in Isabelle/HOL using code reflection or the code generator can be used to obtain source code for several programming languages. So while NaDeA is an interactive prover with very little automation and the “declarative prover” is an interactive prover with quite some automation, the “simple prover” is fully automatic.

However, after 5 years we have reached the conclusion that NaDeA and the other provers are a bit too complicated for the bachelor course. Furthermore, we have a new MSc course “Automated Reasoning” (https://kurser.dtu.dk/course/02256) where NaDeA and the other provers can be better utilized. For the new MSc course “Automated Reasoning” we have also developed a formally verified prover for propositional logic that is much simpler, essentially 7 lines with rewriting rules, for which we have formal proofs in Isabelle/HOL ensuring:

- Termination
- Soundness
- Completeness

The starting point of our formalization has been the recent work by Julius Michaelis and Tobias Nipkow on proof systems for propositional logic [12]. We use a sequent calculus and our aim is to keep it as simple as possible.

In Section 2 we consider related work. In Section 3 we give a quick recap of the sequent calculus. In Section 4 we provide an overview of the prover. In Section 5 we describe the termination proof. In Section 6 we describe a number of examples. In Section 7 we describe the proof of soundness and completeness. In Section 8 we briefly look at code generation (OCaml). Finally Section 9 provides the conclusion.

The micro prover is available online here (149 lines):

https://bitbucket.org/isafol/isafol/src/master/Sequent_Calculus/Micro_Prover.thy

The Isabelle/HOL document is checked in a few seconds. On a fast computer with many cores it takes less than a second for the whole document.
2 Related Work

We have already mentioned in Section 1 that we have used formalizations of logic like NaDeA in teaching logic [21, 19, 7, 24, 23]. The Incredible Proof Machine by Joachim Breitner [6] has also been used for teaching but as far as we know the formalization in Isabelle/HOL is not used in the actual teaching and similar observations hold for other contributions, in particular at the venues dedicated to the topic, such as Tools for Teaching Logic (TTL) and Theorem proving components for Educational software (ThEdu). The starting point of our formalization [12] has also not been used for teaching logic and is not immediately understandable for most bachelor and master students. Small provers like leanTaP and leanCoP [14] are difficult to understand for beginners (but their performance is in general stronger).

In Section 1 we have also mentioned some state-of-the-art formalizations of logic [16, 17, 18]. Other advanced formalizations of first-order logic [3, 4, 5, 9, 20] and even higher-order logic [11, 8] are available but are much more involved than NaDeA.

3 Prerequisites: Sequent Calculus

For the course on automated reasoning we do not assume that the students have a strong background in logic and computer science. We start with a brief description of the sequent calculus for classical propositional logic.

We use Moti Ben-Ari’s textbook as a starting point [1]. Formulas A, B, \ldots in the classical propositional logic are generated from falsity (\bot), propositional symbols (p, q, \ldots) and implications (\rightarrow). The relevant sequent calculus axioms and rules are as follows.

The axioms of the system are of the form

$$U \cup \{A\} \vdash V \cup \{A\}$$

or

$$U \cup \{\bot\} \vdash V$$

where U and V are sets of formulas.

The rules of the system are left and right introduction rules:

$$
\frac{U \vdash V \cup \{A\}}{U \cup \{A \rightarrow B\} \vdash V} \\
\frac{U \cup \{B\} \vdash V}{U \cup \{A \rightarrow B\} \vdash V} \\
\frac{U \cup \{A\} \vdash V \cup \{B\}}{U \vdash V \cup \{A \rightarrow B\}}
$$

Whereas the right introduction rule is quite straightforward we find the left introduction rule more difficult to explain to students. The best approach seems to be to consider the case where $A \rightarrow B$ is false and what it means classically for A and B.

4 Overview of the Prover

We now provide an overview of the prover. We use the following definition:

Formulas are either \bot (falsity), a propositional symbol (a natural number) or an implication ($p \rightarrow q$).

When programming in Isabelle/HOL it is not a problem to use logical/mathematical symbols like \bot and \rightarrow and in contrast to most programming languages the natural numbers are available as a datatype.
Two comments about programming in Isabelle/HOL using functions. Firstly, an underscore_ is used when the argument is irrelevant (wildcard). Secondly, we prefer to use the if ... then ... else expression instead of the implication operator of Isabelle/HOL in order to make it easier to understand for (computer science) students just starting to learn logic.

We define the primitive recursive functions member and common as follows.

\[
\begin{align*}
\text{member } _ \ [\] &= \text{False} \\
\text{member } m \ (n \ # A) &= (\text{if } m = n \ \text{then} \ \text{True} \ \text{else} \ \text{member } m \ A) \\
\text{common } _ \ [\] &= \text{False} \\
\text{common } A \ (m \ # B) &= (\text{if } \text{member } m \ A \ \text{then} \ \text{True} \ \text{else} \ \text{common } A \ B)
\end{align*}
\]

In Isabelle/HOL lists are constructed from head and tail using the # operator. The functions are quite easy to understand for computer science students, in particular if they know functional and/or logic programming. But it is important that the students have a very good understanding of recursion and we start with the primitive recursive functions member and common in order to make sure that all students understand the list datatype, termination and correctness with formal proofs:

\[
\begin{align*}
\text{lemma member}_\text{set}: (\text{member } m \ A \leftarrow\rightarrow \ m \ \in \ \text{set } A) \\
&\text{by (induct } A) \ \text{simp}_\text{all}
\end{align*}
\]

\[
\begin{align*}
\text{lemma common}_\text{set}: (\text{common } A \ B \leftarrow\rightarrow \ \text{set } A \ \cap \ \text{set } B \neq \ \{\}) \\
&\text{by (induct } B) \ \text{(simp}_\text{all add: member}_\text{set})
\end{align*}
\]

At this point the students cannot fully understand the above proofs in Isabelle/HOL but it is important to point out from the start the possibility of mixing proving and programming.

We then define a (non-primitive) recursive function \(\mu\) as follows.

\[
\begin{align*}
\mu \ A \ B \ (\text{Pro } n \ # C) \ [\] &= \mu \ (n \ # A) \ B \ C \ [\] \\
\mu \ A \ B \ C \ (\text{Pro } n \ # D) &= \mu \ A \ (n \ # B) \ C \ D \\
\mu \ _ \ _ \ (\perp \ # \ _) \ [\] &= \text{True} \\
\mu \ A \ B \ C \ (\perp \ # D) &= \mu \ A \ B \ C \ D \\
\mu \ A \ B \ ((p \ \rightarrow \ q) \ # C) \ [\] &= (\text{if } \mu \ A \ B \ C \ [p] \ \text{then} \ \mu \ A \ B \ (q \ # C) \ [\] \ \text{else} \ \text{False}) \\
\mu \ A \ B \ C \ ((p \ \rightarrow \ q) \ # D) &= \mu \ A \ B \ (p \ # C) \ (q \ # D) \\
\mu \ A \ B \ [\] \ [\] &= \text{common } A \ B
\end{align*}
\]

The first and second arguments are the basic propositions from the left and right sides of the sequents and the third and fourth arguments are the left and right sides of the sequents (with formulas not yet processed). The programming aspects of the individual lines in the prover are not too difficult to understand but even with a firm grasp of the sequent calculus it is by no means obvious to the students that the above program is correct. In the following sections we present the formal proof in Isabelle/HOL and also explain the details of the micro prover.

5 Termination

We start the Isabelle/HOL theory with the datatype for formulas.

\[
\begin{align*}
\text{theory } \text{Micro}_\text{Prover} \ \text{imports } \text{Main} \ \text{begin} \\
\text{datatype form} &= \text{Pro } \text{nat} \ | \ \text{Falsity } (\perp) \ | \ \text{Imp } \text{form} \ (\text{infix } \rightarrow \ 0)
\end{align*}
\]
For simplicity in the definition we do not make the implication operator right associative and we do not introduce any precedences.

We then define the functions for the micro prover. The primitive recursive functions do not need any termination proof.

primrec member where

\[
\langle \text{member } [] = \text{False} \rangle \ |
\langle \text{member } m (n \# A) = (\text{if } m = n \text{ then True else member } m A) \rangle
\]

primrec common where

\[
\langle \text{common } [] = \text{False} \rangle \ |
\langle \text{common } A (m \# B) = (\text{if member } m A \text{ then True else common } A B) \rangle
\]

function µ where

\[
\langle \mu A B (Pro n \# C) [] = \mu (n \# A) B C [] \rangle \ |
\langle \mu A B C (Pro n \# D) = \mu (n \# B) C D \rangle \ |
\langle \mu [] (\bot \# \bot) = \text{True} \rangle \ |
\langle \mu A B C (\bot \# D) = \mu A B C D \rangle \ |
\langle \mu A B (p \rightarrow q \# C) [] = (\text{if } \mu A B C [p] \text{ then } \mu A B (q \# C) [] \text{ else False}) \rangle \ |
\langle \mu A B C (p \rightarrow q \# D) = \mu A B (p \# C) (q \# D) \rangle \ |
\langle \mu A B [] [] = \text{common } A B \rangle
\]

by **pat_completeness simp_all**

We prove that the argument patterns are complete using the `pat_completeness simp_all` formal proof. This is more or less the default approach. Finally termination is proved using `simp_all` with an appropriate measure using the sizes of the lists of formulas and the sizes of the individual formulas.

termination by \((\text{relation } (\text{measure } (\lambda (\text{C, D}). \text{size } (\text{C @ D}) + 2* (\sum p \leftarrow \text{C @ D}. \text{size } p))) \text{ simp_all}) \)

6 Examples

We show six examples, first as ordinary propositions in Isabelle/HOL and then as proofs using the micro prover.

proposition \(((p \rightarrow \text{False}) \rightarrow \text{False}) \rightarrow p \) **by fast**

theorem \(\langle \mu [] [] [] [((\text{Pro } 0 \rightarrow \bot) \rightarrow \bot) \rightarrow \text{Pro } 0] \rangle \) **by eval**

proposition \(p \rightarrow p \) **by fast**

theorem \(\langle \mu [] [] [] [\text{Pro } 0 \rightarrow \text{Pro } 0] \rangle \) **by eval**

proposition \(p \rightarrow q \rightarrow p \) **by fast**

theorem \(\langle \mu [] [] [] [\text{Pro } 0 \rightarrow (\text{Pro } 1 \rightarrow \text{Pro } 0)] \rangle \) **by eval**

proposition \(((p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r) \) **by fast**

theorem \(\langle \mu [] [] [] [((\text{Pro } 0 \rightarrow (\text{Pro } 1 \rightarrow \text{Pro } 2)) \rightarrow ((\text{Pro } 0 \rightarrow \text{Pro } 1) \rightarrow (\text{Pro } 0 \rightarrow \text{Pro } 2))] \rangle \) **by eval**
proposition \((p \rightarrow q \rightarrow q \rightarrow p) \) by fast

theorem \(\mu [\emptyset] \emptyset [\emptyset] \rightarrow (Pro 0 \rightarrow (Pro 1 \rightarrow (Pro 1 \rightarrow Pro 0))): \) by eval

proposition \((p \rightarrow (p \rightarrow q) \rightarrow q) \) by fast

theorem \(\mu [\emptyset] \emptyset [\emptyset] \rightarrow ((Pro 0 \rightarrow Pro 1) \rightarrow Pro 1): \) by eval

7 Soundness and Completeness

As preliminaries we define another prover that returns a list of basic proposition to be used for building counter-examples.

function \(\mu' \) where

\(\mu' A B (Pro n \# C) \emptyset = \mu' (n \# A) B C \emptyset: \)

\(\mu' A B C (Pro n \# D) = \mu' A (n \# B) C D: \)

\(\mu' \bot (\bot \# D) = \mu' A B C D: \)

\(\mu' A B ((p \rightarrow q) \# C) \emptyset = \mu' A B C [p @ \mu' A B (q \# C) \emptyset: \)

\(\mu' A B C ((p \rightarrow q) \# D) = \mu' A B (p \# C) (q \# D): \)

\(\mu' A B \emptyset \emptyset = (\text{if set } A \cap \text{set } B = \{\} \text{ then } [A] \text{ else } \emptyset) \)

by pat_completeness simp_all

termination by (relation \(measure (\lambda(C,D). \text{size } (C @ D) + 2*(\sum p \leftarrow C @ D. \text{size } p)): \)) simp_all

The new prover is proved to work as the original prover.

lemma member_set: \(\langle \text{member } m \text{ A } \iff m \in \text{set A} \rangle \)
by (induct A) simp_all

lemma common_set: \(\langle \text{common } A B \iff \text{set } A \cap \text{set } B \neq \{\} \rangle \)
by (induct B) (simp_all add: member_set)

lemma micro: \(\langle \mu A B C D \iff \mu' A B C D = \emptyset \rangle \)
by (induct rule: \(\mu \text{-induct} \)) (simp_all add: common_set)

We then define a primitive recursive function \(\text{semantics} \) as follows. The first argument is the interpretation, namely a function from propositional symbols (natural numbers) to truth values (True/False).

primrec semantics where

\(\langle \text{semantics } i (\text{Pro } n) = i n \rangle: \)

\(\langle \text{semantics } \bot = \text{False} \rangle: \)

\(\langle \text{semantics } i (p \rightarrow q) = (\text{if semantics } i p \text{ then semantics } i q \text{ else True}) \rangle: \)

The semantics is extended to sequents.

abbreviation \(\langle \text{semantics}' i X Y \equiv (\forall p \in \text{set } X. \text{semantics } i p) \rightarrow (\exists p \in \text{set } Y. \text{semantics } i p) \rangle: \)
The sequent calculus SC is proved sound using the automation of Isabelle/HOL.

lemma proper: $\langle X \Rightarrow Y \Rightarrow \text{semantics'} i X Y \rangle$

by (induct rule: $SC.induct$) auto

The new prover is proved complete using counter-examples and really using the automation of Isabelle/HOL.

lemma cex: $\langle L \in \text{set} (\mu' A B C D) \Rightarrow \neg \text{semantics'} (\lambda n. n \in \text{set} L) (\text{map Pro } A @ C) (\text{map Pro } B @ D) \rangle$

by (induct $A B C D$ rule: $\mu'.induct$) auto

The following lemma is used in the soundness proof to follow. We find that the proof is an excellent example of the advanced natural deduction proof style available in Isabelle/HOL (again combined with automation).

lemma base: $\langle \text{set } A \cap \text{set } B \neq \{\} \Rightarrow \text{map Pro } A \Rightarrow \text{map Pro } B \rangle$

proof –

assume $\langle \text{set } A \cap \text{set } B \neq \{\} \rangle$

then obtain $n A' B'$ where $\langle \text{set } (n \# A') = \text{set } A \rangle \langle \text{set } (n \# B') = \text{set } B \rangle$

by auto

moreover have $\langle \text{map Pro } (n \# A') \Rightarrow \text{map Pro } (n \# B') \rangle$

by Basic by simp

ultimately show thesis

using $\text{Set}_L \text{ Set}_R \text{ set}_\text{map}$ by metis

qed

The new prover is also proved sound. Here the proof by induction needs help in three cases (number 3, 5 and 6).

lemma just: $\langle \mu' A B C D = [] \Rightarrow \text{map Pro } A @ C \Rightarrow \text{map Pro } B @ D \rangle$

proof (induct $A B C D$ rule: $\mu'.induct$)

case $\langle 3 A B C \rangle$

have $\langle \bot \# \text{map Pro } A @ C \Rightarrow \text{map Pro } B \rangle$

using Fls_L by simp

then show case

using Set_L by simp

next

case $\langle 5 A B p q C \rangle$

then have $\langle \text{map Pro } A @ C \Rightarrow \text{map Pro } B @ [p] \rangle \langle \text{map Pro } A @ q \# C \Rightarrow \text{map Pro } B \rangle$

by simp all

have $\langle \text{map Pro } A @ C \Rightarrow p \# \text{map Pro } B \rangle \langle q \# \text{map Pro } A @ C \Rightarrow \text{map Pro } B \rangle$

by (use + Set_R in simp) (use + Set_L in simp)

then show case

using $\text{Imp}_L \text{ Set}_L$ by fastforce
next
case (6 A B C p q D)
then have (map Pro A @ p # C ⇒ map Pro B @ q # D)
 by simp
then have (p # map Pro A @ C ⇒ q # map Pro B @ D)
 using SetL Set_R Un_insert_right list.set(2) set_append by metis
then show ?case
 using Imp_R Set_R by fastforce
qed (auto simp: base intro: SC.intros split: if_splits)

Finally we prove the soundness and completeness of the micro prover.

theorem main: (∃ i. semantics i p) ⟷ (∃ i. semantics i p)
proof	have (∃ i. semantics i p) ⟷ (∃ i. semantics i p) for i p
 using just micro proper by fastforce
then show ?thesis
 using cex micro list.set_intros(1) neg_Nil_conv set_append Un_iff by metis
qed

end

8 Code Generation (OCaml)

In Isabelle/HOL it is possible to generate code for Standard ML, Haskell, OCaml and Scala. ML and OCaml are arguably the closest to programming in Isabelle/HOL and while ML is entirely integrated in Isabelle it is overall a good experience for students to have a look at the code generated for OCaml because nowadays OCaml is a widely used general-purpose industrial-strength programming language with an emphasis on expressiveness and safety.

The following OCaml program is obtained in Isabelle/HOL as export_code test in OCaml

The program includes a simple test of trying to prove falsity and hence the result is simply

- : bool = false for the call Micro_Prover.test after the following 57 lines:

module HOL : sig
 type 'a equal = {equal : 'a -> 'a -> bool}
 val equal : 'a equal -> 'a -> 'a -> bool
 val eq : 'a equal -> 'a -> 'a -> bool
end = struct

 type 'a equal = {equal : 'a -> 'a -> bool};;
 let equal _A = _A.equal;;

 let rec eq _A a b = equal _A a b;;

end;; (*struct HOL*)
module Arith : sig
 type nat
 val equal_nat : nat HOL.equal
end = struct

type nat = Zero_nat | Suc of nat;;

let rec equal_nata x0 x1 = match x0, x1 with Zero_nat, Suc x2 -> false
 | Suc x2, Zero_nat -> false
 | Suc x2, Suc y2 -> equal_nata x2 y2
 | Zero_nat, Zero_nat -> true;;

let equal_nat = ({HOL.equal = equal_nata} : nat HOL.equal);;
end;; (*struct Arith*)

module Micro_Prover : sig
 type form
 val test : bool
end = struct

type form = Pro of Arith.nat | Falsity | Imp of form * form;;

let rec member _A uu x1 = match uu, x1 with uu, [] -> false
 | m, n :: a -> (if HOL.eq _A m n then true else member _A m a);;

let rec common _A uu x1 = match uu, x1 with uu, [] -> false
 | a, m :: b -> (if member _A m a then true else common _A a b);;

let rec mu a b c x3 = match a, b, c, x3 with a, b, Pro n :: c, [] -> mu (n :: a) b c []
 | a, b, c, Pro n :: d -> mu a (n :: b) c d
 | uu, uv, Falsity :: uw, [] -> true
 | a, b, c, Falsity :: d -> mu a b c d
 | a, b, Imp (p, q) :: c, [] ->
 (if mu a b c [p] then mu a b (q :: c) [] else false)
 | a, b, c, Imp (p, q) :: d -> mu a b (p :: c) (q :: d)
 | a, b, [], [] -> common Arith.equal_nat a b;;

let test : bool = mu [] [] [Falsity];;
end;; (*struct Micro_Prover*)
9 Conclusion and Future Work

We have used Julius Michaelis and Tobias Nipkow’s formalization [12] as a starting point but have changed both the overall structure and the details of the programs in many ways such that the termination, soundness and completeness proofs are easier to understand. The formalization has recently been successfully used in a new computer science course on automated reasoning at DTU (40 students):

https://kurser.dtu.dk/course/02256

The present approach to teaching logic is to our knowledge unique and will be further tested as soon as possible. As future work we in particular consider developing more teaching materials for the micro prover.

We include a supplement with a revised micro prover but without the sequent calculus SC. We prove soundness and completeness directly from the semantics. The file has just 36 lines including blank lines — or 25 lines of code.

Acknowledgements

We thank Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull for discussions.

References

A Micro Prover

Villadsen

Supplement: A Revised Micro Prover

theory Prover imports Main begin

datatype 'a form = Pro 'a | Falsity (∥⊥∥) | Imp ('a form) ('a form) (infix ⟨→⟩ 0)

primrec semantics where
⟨semantics i (Pro n) = i n⟩ |
⟨semantics ⊥ = False⟩ |
⟨semantics i (p → q) = (semantics i p → semantics i q)⟩ |

abbreviation ⟨sc X Y i ≡ (∀ p ∈ set X. semantics i p) → (∃ q ∈ set Y. semantics i q)⟩ |

function µ where
⟨µ A B (Pro n ⊢ C) [] = µ (n ⊢ A) B C []⟩ |
⟨µ A B C (Pro n ⊢ D) = µ A (n ⊢ B) C D]⟩ |
⟨µ ⊥ ⊢ (⊥ ⊢ ⊥) [] = {}⟩ |
⟨µ A B C (⊥ ⊢ ⊥) = µ A B C⟩ |
⟨µ A B C ((p → q) ⊢ C) [] = µ A B C [p] ∪ µ A B (q ⊢ C) []⟩ |
⟨µ A B C ((p → q) ⊢ D) = µ A B (p ⊢ C) [q ⊢ D])⟩ |
⟨µ A B [] [] = (if set A ∩ set B = {} then {A} else {})⟩ |
by pat.completeness simp_all

termination by (relation ⟨measure (λ(_,_,C,D). ∑ p ← C @ D. size p)⟩) simp_all

lemma sat: ⟨sc (map Pro A @ C) (map Pro B @ D) (λn. n ∈ set L)⇒ L ≠ µ A B C D⟩ |
by (induct rule: µ.induct) auto

theorem main: ⟨(∀ i. sc (map Pro A @ C) (map Pro B @ D) i)⇒ µ A B C D = {}⟩ |
by (induct rule: µ.induct) (auto simp: sat)

definition ⟨prover p ≡ µ [] [] [] [p] = {}⟩ |

corollary ⟨prover p ≡ (∀ i. semantics i p)⟩ |
unfolding prover_def by (simp flip: main)

end

Source:

https://bitbucket.org/isafol/isafol/src/master/Sequent_Calculus/Prover.thy